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MAXIKEZING STATIOKABY UTILITY IN A CONSTANT TECHNOLOGY* 

by 

Richard Beals** and TJalling C Koopmans*** 

1.    Introduction 

This paper IB concerned with a problem in the optimal control 

of a nonstochastic process over time.    It can also be looked on as a 

problem in convex programming in a space of infinite sequences of real 

numbers.    Because the problem arose in the theory of optimal economic 

growth, the exposition will use some economic terminology. 

The literature on optimal economic growth contains several 

papers   '      in which a utility function of the form 

00 

(i) uCx., x-, ...) =    L   a1" u(x.) ,      o<a<l, 
1     d t=i t 

is maximized under given conditions of technology and population growth. 

Here x.  is per capita consumption in period t , and u(x) is a 

strictly concave, increasing, single-period utility function, a is 

called a discount factor. If a = ■:—;— , then p is called a discount rate. 
        1 + p '     K   

"  fJtKV   3055(01)  A^-^y-7- fiO£ 
* This study was begun in the summer of 1961 when both authors were engaged 

in research under a contract between the Office of Naval Research and the 
Cowles Foundation. The paper will be presented to the International Sym- 
posium on Mathematical Programming, Princeton, N.J., August 1967« Pre- 
liminary results for the special case of a linear production function 
were presented by Koopmans to a meeting of the Econometric Society in St. 
Louis, December i960. 
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A generalization of (l) has been proposed under the name stationary utility. 

*   Koopnans [196Ü, 1966], Koopnans, Diamond and Williamson [1961*-]. 

and is definable by a recursive relation 

(2) U(x1, x2, Xy   ...) =V{x1, U(x2, Xy   ...))  • 

One obtains (l) by   V(x, U) = u(x) + a U .    The natural generalization of   a 

in (l) to stationary utility is the function 

<-) «w - (^) „ = U(x, x, x,  ...) 

In this paper we study the maximization of (2) under production 

assumptions, described below. 

2. Definitions, notations and assumptions 

We assume discrete time t , and a single commodity serving as 

capital (amount z  at end of period t ) and also as consumption good 

(flew x  during period t ) . Technology is constant and is represented by 

a production function f(z) . If the labor force is assumed constant, f(O 

represents output in period t+1 , net of depreciation. If the labor force 

grows exponentially at a given rate X > 0 , z  and x.  stand for capital 

and consumption per worker, and f (z) represents output per worker less 

Xz , the capital formation required in each period merely to keep z. con- 

stant. 



A capital path is a sequence     z=(z,z1>...))    05z.   <z, 

where    0 < z < + « .    We denote by     z   the tail    (z ,  z      ,   ...)    and by 

z.     the finite segment    (z ,  z  ,.,,   .... z. )  . st ^ s  s'     5+1'        '    t' 

A consumption path is a sequence,    x = (x1, xp,   ...)  , 

x^  > 0  .      We define the tail    .x    and the segment      x.     as above. 
t = t 'St 

For any constemt a , we denote by   a the constant (capital 

or consumption) path (a, a, a, ... ) . 

The capital path  z is said to be feasible for the initial 

capital stock z if z = z and 

(5)       Vi ^ zt + f(zt) '  t = o, i, ... . Y'\ 

If  z is feasible for z the associated consumption path .x with 

W Xt+1 = 
Zt + f(2t) " Zt+1 ^

0 >   t = 0, 1, ... ^ 

is also said to be feasible for z . Let ^  and .'   be the 

collections of capital paths and consumption paths, respectively, which 

are feasible for z . 

We assume 

(I)    The production function   f(z)    is continuous and continuously 

differentiable on the interval rJC = [o, z),    z ^ »  .    Moreover 

f(0) = 0 ,    0 <f,(0) ,    f    is concave, and the function    h(z) = z + f(z) 

is an increasing function mapping cJ^onto itself.    Hence    h(z) = lim h(z) = z . 

To interpret these assumptions, let    F(Z, L)    represent total % 

output before depreciation,    Z    the total capital stock,     L   the labor force. 
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The standard assumptions    F(0,  L) = F(Z, 0) = 0 ,    FJ  > ö ,  F'  > 0 ,  Ft'    < 0 , 

F    homogeneous of degree 1,    then imply through    F(Z,  L)  = Lf (ü/L)  ,   icnori:!^ 

depreciation,  that    z = m  .    Either exponential labor force Gro\rth or a 

constant rate of depreciation will make   z   the finite number defined by 

f(z)  =0  .      Should    z    > z ,      then feasibility requires    z    < z + c    for 

any    e >0    and large enough    t    (see Figure l).    From assumptions or   U    rade 

below we shall see that optimality requires    z.   < z      eventually.    On the other 

hand,  for    0 < z    < z ,    feasibility precludes    z.   r" z ,    whereac    z    = z 

requires    z.   s z  .    For these reasons we consider only values    z cc/ 

We note for future use that if 0 < z' < z , feasibility permits lim z' = z ; 

see Figure 1. 
t-Ho 

if ■ '• 

^  %'      ^ ^■-    *    <   yi 
*> 

-> Ä 

Figure 1. Two capital paths with zero consumption. 



(II)    uCjX)    is defined on the union   X »    ^JC      of all 

feasible Bets,  satisfies the recursive relation (2), and 1B continuous 

on each V      vlth respect to the product topology.* 

For a definition of the product topology see Kelley [1955]» or use 

t t t 
the distance function   DLx, ,x') =   Z 5    r-r-i '—rr >    where    8 

1     l t=l      •L      lxt " xt' 
is any number with    0 < 5 < 1 . 

An example where    U(1x)    is continuous on each JC       but not 

on X   is given below. 

(ill)   U(,x)    is strictly quasi-concave on ^ . 

U^xU)) >min|u(1x)> U^x')} , 

a standard assumption in utility theory.  In general, it expresses a 

decreasing desire for one commodity or commodity bundle relative to another 

as the other is traded for the one at a constant barter ratio. 

(IV) V(x, U) has positive continuous derivatives öv/dx , 
• o 

ÖV/ÖU ,    on J xR,^,    where     J  = (0, z)    and ^    is the range of   uCjX)  , 

Moreover   V(x, U)    is continuous at   x = 0   for all   U ,    and, if   V    is 

not differentlable at    x = 0 ,    then   lim     V^ U^ = oo   for all   U . 

It follows from (II) and (IV) that   uLx) strictly increases 

with each   x    . 

• '♦ 
5 

That is,    jxU) = Xif) + (l-jO^x')  ,    0 < X < 1 ,    implies \ 
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The purpose of the exception at    x = 0    is to permit a utility- 

function for which " z    >0  " implies that    " x.   >0    for all    t ," 

where    ..x    denotes the optimal consumption path. 

From the identity    U(      x) = V(x, U(      x))    implied in (2) one xcon xcon " x   ' 

finds by differentiation that (IV) implies    0 < a(x) < 1    for all   x > 0 

with x c   -v.. con 

(O (V)    l£t   V2(x, y; U) = V(x, V(y, U))    and 

bvJx, y; U)   /öV0(x, y; U) 
D(X,   y;   U)   =   -   , ^ » 2S   [  ~     ' /-^V- 

V^ V2(x,  y; U) = const. ^^^f dy 

Then, for given   y, U,    D(x, y; U)    is strictly decreasing In   x   on    J) 

Together with an assumption we will not need, that   D(x, y; U) 

strictly increases with    y ,  (v)  is implied in the following plausible 

assumption:    The first- and second-period consumptions    X(B), y(B)    that 

maximize   Vp(x, y; ll)    for given   U    if bought at given positive prices 

p, q   within a budget    px + qy 5 B >    are strictly increasing with   B . 

Economically, consumption in neither period is inferior to that in the 

other period, in the way potatoes are inferior to steak. 

The three assumptions just mentioned are illustrated in 

Figure 2. 
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Figvire 2.    Noninferiority of consumption in Periods 1 and 2. 

An example of a pair of functions    U(,x) ,    f(z) ,    that satisfies 
7 

all assumptions is given by (l) above, with u(x) » x , 0 < 7 < 1 ,(aiid any f(z) , 

concave and continuously dlfferentiable on CA = [0* 00) with 

f(0) o 0, f'(0) >0 , lim f^z) = 0 , hence lim (f(z)/z) = 0 . Then, for any 
z-^» Z-»co 

€ >0    and sufficiently leurge   t ,    from (5),   (4),    zt+1 = h(zt)    < (l+€)zt , 

hence xt-T 
Xt+1= h(zt^ = (1+€^zt = ^1+€^ ' ZT f0r * > SOme larse T• 

\ 
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-i V Taking e < a  - 1 one sees that the summation (l) converges on each -*-  , 

^ 9   d Jl    z 
J^ .    Note that   u( x)    is not defined on all of    (sx csKt^X       t hence on 

and is not continuous on JL if f(z) is not bounded; in fact, If u(x) = x  , 

(n) .(n) the sequence of consumption paths    ..x*   '    with   x^      = 0 ,    t £ n    and 

x^   '= a"        converges to 0    in the product topology, but 

U(nx^) = 1   for all    n ,    whereas   U(      0) = 0 . vl        ' ' vcon ' 

3.    Optimal capital paths 

Given a feasible capital path      z ,    let    1x   be the associated 

consumption path given by (k).    Define   W(  z)    by   W(  z) = ULx)   .    If 

z   and   z'    are in o o k- then the concavity of the production function 

f(z)    implies that a convex combination      z"    = ^(0
Z) + {1-X.)( z')  , 0 < X < 1 , 

is also in^V       i    ^md that the associated consumption path     x"    has 

xl' > Xx.  + (l-x)x'    for all   t .    This and the strict quasi-concavity of   U 

imply that   W    is also strictly quasi-concave. 

•■ A capital path      z    is optimal for    z    if    z   € <?v,    , and 

W(  z) >  W( z)      for all      z e  •>   . 

A capital path      z    is rtrictly monotone in time if one of the 

following conditions holds; 

t/      =     U ,       X;       <£j        •••       f 

X*   —   KJ f    x ^    ^ j(    «••    f 

V=VJ^       X^       ^ j        •••       y 

t<n,    z=0,    t>n. 

(i) zt < zt+l ' 

(ii) zt = zt+l ' 

(iii) zt > zt+l ' 

(iii)n h > zt+i ' 
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The assumptionü (l) - (V) in section 2 imply the following 

Theorem 1. For any initial capital stock zee/ there is a 

unique optimal capital path  z . This path varies continuouBly vlth z 

and is strictly monotone in time. 

If we define lrr^(z) recursively by h^(z) » h(h^n'1'(z)) , 

Ir '(z) = z , then the set ^>~  is contained in the product &y       of 

the closed intervals [0, frr '(z)] , n = 0, 1, ... . The latter set is 

compact with respect to the product topology, by the theorem of ÜVchonov, 

"1 and -^V  is easily seen to be a closed subset, hence likewise compact. 

Continuity of U on cX  implies continuity of W on -^ • ^ien 'the 

continuous, strictly quasi-concave function W assumes a maximum at a 

and set W(z) = W( z) . 

Given zed/, let  z be the optimal capital path for z 

Lemma 1. W(z) is strictly increasing, and continuous from 

the left. 

Proof. If 05z<z,<z, and if  z is optimal in 
■ o ^ 

let      z' e   ^   ,    be given by    z' = z'  ,    .z' » .z ,      then for the 
^ Ä Ä 

associated consumption paths     x',    x ,    we have   x' >x      and   „x1 =   x , 

so   W(z,) £>W(  zl)>W( z) = W(z)   ,      Therefore   W    is increasing. 

* 
unique element      z    cf the compact convex set  ^    .    The remainder of this i 

section is devoted to showing continuity and strict monotonicity of this > 

unique optimal capital path      z  . 
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If 0 < z < z , then, in the optimal consumption path .x 

associated with  z , some x  is the first to be positive. Then 

z. , > 0 for 0 ^ t' ^ t - 1 , and for a sufficiently small € > 0 there is 

a 6 >0 such that the path (.x i » xt ' € ' t+i*^ " ix i6 feasible 

for z - 6 . Then U( x) < W(z-5) < W(z) . As 8 ■* 0 , UC^) ■* W(z) , 

proving continuity from the left. 

We can now show that  z depends continuously on z . Suppose 

z^n' •*■ z e r    ,    For some z' € Cs ,    z^n' ^ %'    for all n . Then 

* 
■^  / x C   , for all n . Since the latter set is compact, it suffices 
^-B(n) - > z' 

to show that any convergent subsequence of the corrasponding sequence of 

optimal paths,  z   > must converge to  z , the optimal path for z . 

:(n) Renumbering, we may assume      zv  '    itself converges to some z e    i 

spectively,    W(  z) = lim W(  z^n^) = limW(z^nO  >W(z) = W( z)  > W(  z)   . 

By the continuity of   W , Lemma 1, and the optimality of      z   in 

re 

Therefore   W( z) = W( z),so  z =    z    by the uniqueness of      z ,    thus proving 

continuity of      z  . 

Lemma 2.    Suppose    0 S z < z* < z ,    and let     z    and 

be the corresponding optimal paths.    Then either    z..   < z'    or   z1   = z' z' = 0 . 

Proof.   Since z = 0 implies 1..= 0 the statement is obvious 

in that case. 

Now assume 0 < z . The stationarity of U (equation (2)) implies 

that for each t ,  z is optimal for z. . Therefore if 

z = z' jt 0 , then -.z " z' • Suppose so, and let .x and.x1 be the 
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accociated concujnption laths.    Then    x    < x'    and     x =    x'   .      Write 

U, = uC^x) = U(,x,)   .    Then    (x  , x2)    irAXimizes    V2(x, y; U,)    subject to 

h(h(z)  - x) - y = z    ,    and similarly for    (x,1, x')  .    But this is seen to 

contradict assumption    (V)  ,    since    x1  < x'  ,    x    = x'   ,    and    h(z)  - x    = z1 

- z\  = J^z')  - x'   ,      and in view of the concavity of    h ,    the strict 

quasi-concavity of    U, hence of    V« (See Figure 5). 

f 
r 

F 

*'i 

5 *'-' 

v      \ /       • J 

_ - •- 

.'iT^ 

r^W <" 

.< t 

♦ 

2. 

i 

r^ sd] 
"V1, 

V 
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A A 

ttov suppose z1 > zi > 0 • Mov!ns tr<lll z tward zero and 

u~inc; contii ' ty , \lC can find z" vith 0 < z" < z• but vith the 

corrcs_ 0 1 • l ·, i" = zi ; ccc fi gur e 3(n). This vas just shcn:n to be 

imposs i bl • 

A A 

Final y , ··u __ o:.c z
1 

... z 1 
• 0 • z.tov i n[; f rol"l z • tovard z 

" ve cet n z" vith z 1 > z" > z and vith the corresponding z" :;atisfying 
1 

..... ..... 
0 < zi < z1 ; eee figure '(b). But this is the case ruled out just above. 

'Dlie proves tc.. 2. 

We DOW pron IIODOtCD1cit7 ot optial capital paths. 
(J ..... ..... 

ie opt1al tor z £ -. J , z > 0 • Suppose tiret that z
0 

< z1 • 
A A A 

A 

Suppose z 
0 

optimal tor z1 , so te..a 2 implies z1< z2 . Inducins, ve get 
A A A A A A 

zt < zt+l tor all t • !be euee z
0 

• z1 and z
0 

> z1 are handled 

s1Jiilarl)'. 

-· A8)'11Ptotic behavior ot optial paths. 

iD t~ "' 
lblotOD1cit7...ot tbe optiaal path 

0
z illpliee that the (poeeibl)' 

1DtiD1te) lillit 

iDitial capital 

ita lim1t ie. 

..... ..... 
z • lia zt exists. 
• t~ 

A 

stock z , vhen zt 

We V&Dt to detel'llline, iD terms ot the 

increuee, 1a constant, or decreuee....and vbat 
over tilDe 

Suppose the pair (x, y) .ximizes V
2

(x, y; U) • V(x, V(y, U)) 

subJect to the coaatratat z2 • h(h(z
0

) - x) - 7 , vbere U , &01 aa4 z2 
A A A A 

are g1 VeD. Let zl • h( z 0) - X and u2 • Y(7' u) • It toll ova tr<ll the 
A A 

USual &Dal78i8 that 1 it X > 0 aa4 7 > 0 1 tbeD 

(6) 
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If x or y is zero, (6) is replaced by an appropriate inequality. 

Conversely, (6) or the corresponding inequality implies that (x, y) 

is optimal for the given problem. 

Similarly ,x  with each x. > 0 maximizes 

Vn( x , U) = V(x , V(x2, ..., V(x , U)...)jsubject to  x  being obtained by 

Ik)  from z  with z , z , U prescribed,if and only if x     o n       o' n ' 

t = 1, 2, ..., n - 1 , where Ut = Vn_t+1(txn, U) and Un+1 = U . 

A path  z with associated consumption path  x cannot be '  ^ 

improved by finitely many changes in z , t > 1, if and only if the \ 

corresponding equations (7) hold for all t . Thus  z cannot be improved 

by finitely many changes if and only if it cannot be improved by a single ^ 

change. 

Given z e C/ t  z > 0 , the consumption path associated with 

„,z is    x , where x = f(z) . Let U = U(  x) . If     z were con     con * K  ' vcon '       con 

optimal we could divide (6) by  T— V(X, U) to get 

(8) a(f(z))(l + f(z))=l , 

where 0((x) is given by (2a). 

' 

I 



\ 

t - Ik - 

Partition [0,  z]    into dip Joint sets: 

(J '   '    { r |   z - 0,  2 - I,    or   a(f(2))(l + f («)) - 1 )  , 
i 

.7 >   «    { 0 < z < z |     a(f (z))- (1 + f (z))  > 1 )   , 

' 'c   =   { 0 < z < z |    a(f (z))- (l + f'(z)) < 1 ) . 

Then (_/ K is closed and (y , J/ are open. The preceding 

shows that a necessary condition for z to be optimal if z € O- Is 

that z e -'  .We shall show: 

Theorem 2. Let  z be optimal for z ,    0 < z < z .  Then 

(a) if z e ' ~ .  z is the constant path    z ; * ' —       * o *   con 

>       ä — 
(b) if z €    , then z.  increases and z  is the 

smallest number in y " which is larger than z ; 

(c) if z c  '  , then z  decreases and z  is the largest 

J number in y       which is smaller theui z 

A path  z optimal for z is called stable if for ey«ry path  z' 

optimal for z' which has z' sufficiently near z , the limit 

z1 = z   We have the following consequence of Theorem 8; see Figure k. 
tO CD 

Corollary. Let  z be optimal for z .  Then  z  is stable 

unless z e *> " and is also in the closure of (z1 | z1 €L/ , z' >z) 

or of (z1 | z* e o/  , z* < z) . 



( 
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•  ( 

Figure k.    Optimal paths; all except (b) and (f) are stable. 

If zee/, 0 < z < z ,    then (8) shows that the equations (7) are 

satisfied by the path   z = z . Therefore  z cannot be incroved by J -^   con   o o -v * 

changing only finitely many of the z. , t ^ 1 . Statement (a) of 

Theorem 2 is thus included in the following 

< ,♦ Lemma ?•  Let z be a feasible capital path with z 5 z < 2 

for all t . Suppose W( z) r* W( z1) for all  z1 with z' = z  and       —*-t   vo ' ^  o '     o      o   o   

z' = ^z for some ra, n .  Then  z is optimal. m n 
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Proof. Suppose z" t   j      , and suppose first that z" > 0 , all t 
z 

For any n there is a path  z^ ' e • ■{   with  z^ ' » z" euid  z^ ' = z v o     ^z       onon     m     m 

for sufficiently large m (depending on n , z" and  z ;  this follows 

from the last remark preceding Figure 1 above. Then W( z) >W( z^ ') , and 

z^n' ■*   z"    so W( z) ^W( z") .  If zT is eventually zero, choose  z^ oo       *oo t -*    »       0 

similarly but with Z2  « "»ax (z", € ) for t ^ n , where € > 0 . e ■»• 0 . ^ t        t' n       **     > n   ' n 

Again we find W( z) ^ lim W( z^')* W( z") , so  z is optimal. 

It is clear from the proof of Lemma 3 that the assumption that z 

is bounded away from z is stronger than necessary. What is needed is that 

z can always be caught up with, even from a late and bad start. Some such 

assumption is clearly necessary, however, for let z = Ir '(z ) , all t . 
w 0 

Then z'  €   / and      z1 

0 dZo 
z   for some     n   implies      z' n ^ o z .    Thus      z o o 

cannot be improved by finitely many changes,  since it cannot be changed in 

only finitely many places.     However the associated consumption path is 

0 ,    so        z    is strictly inferior to any other path in con    ' o ^ ^ ^ A z I 
Next we consider the effect of finitely many changes in   z 

con 

^ 

0 > 
when z € 

Lemma \. Suppose 
c 

z e 

t < n , while  z 
rrin  ' 

then 

If  z e  f   and z < z for 

holds only if  z =   z . 
 «  o   con 



t -1? 

Proof. We induce on n . By assumption z « z , so for n = 1 

there is nothing to prove. Suppose the statement is true for n = m ^ 1 

and suppose z.f z for t < m while  ,-,2=   z. If z =z rr    t =        ■        m+l   con       ra 

then  z =   z and the statement holds, by assumption. Suppose z < z . 
m   con m 

") . 
Choose a path  z' e '%     with z' = z , t * m and z'«z + Ö,8>0. 

^o'z      t '        ' m * 

The corresponding value of W satisfies 

W(oZ,) ' W(conz) = I (x' u)Nx)(l + f(z)) - 1] -6 + e(ö)-ö , 

where x = f(z) ,    U = W(  z) , and e(8) -► 0 as 8*0. Since z € ^  , 

the factor in square brackets is positive. Therefore, for small positive 8 , 

W( z') >W(  z) . Now z < z < z1 , so there is a convex combination  z" xo     Ncon 'mm' o 

■ X( z) + (l-X)( z1) with z" = z . Clearly z" < z for t < m and oo ni t * 

z" B       z .    The Induction assumption implies that   W( 2") 5 W(      z) . m con p * vo    ' -    vcon ' 

Strict quasi-concavity of   W   implies that   W(  z") >   min {W(oz), W( z1))  , 

but    W( z') >W(      z) ^WC  z") ,    so   W(  z")  >W(  z) .    Therefore vo vcon ' =    vo    ' ' xo    '        vo / 

W(      z) >W( z) ,    completing the proof. 

S<. A slmllau' argument shows that if z e L/  , any change in    z 

moving finitely many z  upward is a change for the worse. 

We can now prove (b) of Theorem 2.  Suppose z e 6V  and let  z 

be the optimal path for z . We know that  z is not constant, so it either 

Increases or decreases. Suppose It decreased. As in the proof of Lemma 3 , 

there would be a sequence of paths  z^ 'e /,        such that z^  ' •*    z , 

z} ' = z for all t , and  z^ ' =   z for large m . By Lemma 4, 
t '     m     con ^      ' 
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WLZ       = w(      z) ,    all    n .     Therefore   W( z) < W(      z) ,contradicting 'con con 

the unique optimality of  z , since    z in ncncptinal. Thus  z increases. 
con 

Let z'  be the smal lest number in   ~ which is larger than z . 

If z1 » z then certainly z ^ z' . If z' < z , then   z' is optimal J      oo ' con r 

for    z'    emd repeated application cf Lemma 2 shovs that    z    < z'    for all    t . 

Thus again    z    ^   z'  .     Suppose    z    = z" < z .       Then   mz    satisfies 
00   = 00 X 

equations (7) for large T and all n , if we write U +1 = W(    z) . But 

z ■*■        z" .  By continuity    z" will also satisfy equations (7) , 

with U ., » V/(  z1) , so z" e    . Then z" « z' . This completes the 
n+1   con   ' 

proof of (b), and the proof of (c) Is exactly parallel. 

If   z is an optimal capital path and ,x is the associated 

consumption path, then  x obviously has the following properties: 

x < f(zt) if z  increases; 

A ^ 

x    >f{z   )    if    z      decreases; 

=    lim   xt =   lim f(zt) 
t-Kn t-H» 

II  1;;      4   clear whether cur asoumptions guarantee    that    x    is also 

monotone with respect  to tine.     It is monotone when    U    has the srecial 

form (l),    r.co equation  (7) 
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5- Construction of optimal paths 

We give two procedures for constructing the optimal capital 

path as a limit of a sequence of paths each obtained by solving the 

optimization problem for finite time. Each procedure has certain dis- 

advantages, theoretical or practical. 

Given a path  z e^/i  and an integer n > 1 , let Tn(oz) z a  '      n^o 

be the path  z'e '/  which maximizes W( z') with contraints 

z' ,= z ,.  ,-,2'= ,-z . Thus T ( z) is obtained from  z o n-1  o n-1 * n+1   n+1 nxo ' o 

by making the best feasible adjustment in z  alone. Then T  is an 

operator from  On  to 'h   • Note that W(T (0
Z)) ^^^(o2^ * with 

(/       (T 
equality only when T ( z) = z . no   o 

Let S  be the iterated operator S = T T n ... T, , n ^       n   n n-1    1 ' 

and suppose z e (j/ , z >0 . Start with some path  z^ ^ in   ^n 

and define a sequence of paths inductively by 

o        n+lvo   ' 

Thus      z^       '    is obtained by improving      z^  '    in the first    n+1 

places,  in order.    We cannot be sure that      z^   '    will converge to 

the optimal path      z  ;    in fact  if we make the unfortunate initial 

choice    z;   '  = h^   '(z)    for all    t  ,     then there is no room for finite 
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change, so  z^n' = z^0' for all n , and  z^0'' is inferior to o     o '     o 

any oz e  ^ . 

Some subsequence  z^ '    will converge to a path  z e 

This path cannot be improved by a single change, so it cannot be improved 

by finitely many changes. In fact W( z^ ') is nondecreasing, and 

W( z(m)) <V{TA   z(ra))) gw(S A  z(m))) =W( z(m+l)) , vo   ' = x ivo   ''   x m+l^o   "        vo    ' ' 

so W(T, ( z)) = W( z) . Hence, by strict quasi-concavity of W ,  the 

adjustment of z  in the definition of T, ( z) leaves z  unchanged, 

and T, ( z) = z . Inductively, suppose T.( z) = z for j < n . Then 

Til(z)=S n(z), end the same argument shows W(T ., ( z)) = W( z) , n+lxo '   n+lvo / ' D x n+1 o "   vo ' ' 

so T .,( z) = z . If z^. < z < z for all t , then, by Lemma 5, n+Po '  o        t = > >    J s > 

z is optimal. Moreover, if  z is optimal, then any other convergent 

subsequence of  z* ' will converge to a  z' with W( z') = W( z) . 

Hence the whole sequence  z* ' will converge to  z . As noted above, 

the limit need not be optimal, however. 

An optimum can be guaranteed by the following method. Given 

z € vj) with z >0 ,  choose some z' e vj' •  (A computationally 

helpful choice of z'  is the z of Theorem 2, provided z < z .) 
00 00 

For some    N    there  is a path      z'  e   ' n      with    „z'  =        z'   .    For •^ o /Vz N con 

any    n > N    there  is a unique      z^   ' e   Qy       maximizing    W(   z)    subject 

a 
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to      z = z'   .    Let      z    be optimal for    z   .    As in the proof of 
n        con o 

(n) Lemma 5 there is a sequence of paths      2V   ' -►    z    such that,  for each 

n ,    the tail      z^    is eventually z'   .    Then   W(  z^nM = W(  z^raM  , 
' m ^    con vo '        Ko        ' ' 

so    lira W(   z^mh = W(  z)   .    It follows that      z^ ■*■   z  . 

The practical difficulty with this method is that  it involves 

solving optimization problems for more and more time periods,  rather 

than for one period at each step as in the first method.     Let us note 

that each such problem can be solved by iterating the one period 

solution.    Suppose      z^  ' e   fh     and   n > 1 .    A modification of the 

argument above shows that      z*  ' =  (S )   (  z^   ')    converges to the 

path      z1   e     (A      which maximizes    W(  z')    subject to       , z* =      . z r o Mz ^o ' ü n+1        n+x 
(o) 
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